On a functional equation connected to Hermite quadrature rule

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gauss-Hermite interval quadrature rule

The existence and uniqueness of the Gaussian interval quadrature formula with respect to the Hermite weight function on R is proved. Similar results have been recently obtained for the Jacobi weight on [−1, 1] and for the generalized Laguerre weight on [0,+∞). Numerical construction of the Gauss–Hermite interval quadrature rule is also investigated, and a suitable algorithm is proposed. A few n...

متن کامل

A note on multivariate Gauss-Hermite quadrature

The nodes xi and weights wi are uniquely determined by the choice of the domain D and the weighting kernel ψ(x). In fact, one may go as far as to say that the choice of the domain and the kernel defines a quadrature. In particular, the location of the nodes xi are given by the roots of the polynomial of order m in the sequence of orthonormal polynomials {πj} generated by the metric 〈πj|πk〉 := ∫...

متن کامل

A Method to Approximate Solution of the First Kind Abel Integral Equation Using Navot's Quadrature and Simpson's Rule

In this paper, we present a method for solving the rst kind Abel integral equation. In thismethod, the rst kind Abel integral equation is transformed to the second kind Volterraintegral equation with a continuous kernel and a smooth deriving term expressed by weaklysingular integrals. By using Sidi's sinm - transformation and modied Navot-Simpson'sintegration rule, an algorithm for solving this...

متن کامل

On a new type of stability of a radical cubic functional equation related to Jensen mapping

‎The aim of this paper is to introduce and solve the‎ radical cubic functional equation‎ ‎$‎‎fleft(sqrt[3]{x^{3}+y^{3}}right)+fleft(sqrt[3]{x^{3}-y^{3}}right)=2f(x)‎$.‎ ‎We also investigate some stability and hyperstability results for‎ ‎the considered equation in 2-Banach spaces‎.

متن کامل

Hermite-Pade' approximation and simultaneous quadrature formulas

We study the construction of a quadrature rule which allows the simultaneous integration of a given function with respect to different weights. This construction is built on the basis of simultaneous Padé approximation of a Nikishin system of functions. The properties of these approximants are used in the proof of convergence of the quadratures and positivity of the corresponding quadrature coe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2014

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2014.01.002